AskDefine | Define absorbance

User Contributed Dictionary

English

Noun

  1. A logarithmic measure of the amount of light that is absorbed when passing through a substance

Translations

French

Noun

fr-noun f
  1. the fact of being absorbent

Extensive Definition

In spectroscopy, the absorbance A is defined as
A_\lambda = -\log_(I/I_0)\,,
where I is the intensity of light at a specified wavelength λ that has passed through a sample (transmitted light intensity) and I_0 is the intensity of the light before it enters the sample or incident light intensity. Absorbance measurements are often carried out in analytical chemistry, since the absorbance of a sample is proportional to the thickness of the sample and the concentration of the absorbing species in the sample, in contrast to the transmittance I/I_0 of a sample, which varies logarithmically with thickness and concentration.
Outside the field of analytical chemistry, e.g. when used with the Tunable Diode Laser Absorption Spectroscopy (TDLAS) technique, the absorbance is sometimes defined as the natural logarithm instead of the base-10 logarithm, i.e. as
A_\lambda = -\ln(I/I_0)\,,
See the Beer-Lambert law for a more complete discussion.

Explanation

The term absorption refers to the physical process of absorbing light, while absorbance refers to the mathematical quantity. Also, absorbance does not always measure absorption: if a given sample is, for example, a dispersion, part of the incident light will in fact be scattered by the dispersed particles, and not really absorbed. Absorbance only contemplates the ratio of transmitted light over incident light, not the mechanism by which light intensity decreases. Despite this fact, absorbance can still be used to determine concentrations (of particles) in such cases.
Although absorbance does not have true units, it is quite often reported in "Absorbance Units" or AU.

Instrument measurement range

Any real measuring instrument has a limited range over which it can accurately measure absorbance. An instrument must be calibrated and checked against known standards if the readings are to be trusted. Many instruments will become non-linear (fail to follow the Beer-Lambert law) starting at approximately 2 AU (~1% Transmission). It is also difficult to accurately measure very small absorbances (below 10-4) with commercially available instruments for chemical analysis. In such cases, laser-based absorption techniques can be used, since they have demonstated detection limits that supersede those obtained by conventional non-laser-based instruments by many orders of magnitude (detection have been demostated all the way down to 5 10-13). The theoretical best accuracy for most commercially available non-laser-based instruments is in the range near 1 AU. The path length or concentration should then, when possible, be adjusted to achieve readings near this range.
Optical density, or OD, is the absorbance per unit length, i.e., the absorbance divided by the thickness of the sample, although it is sometimes used as a synonym for the absorbance with a base-10 logarithm.

References

absorbance in Catalan: Absorbància
absorbance in Czech: Absorbance
absorbance in German: Extinktion (Optik)
absorbance in Spanish: Absorbancia
absorbance in French: Absorbance
absorbance in Italian: Assorbanza
absorbance in Japanese: 吸光度
absorbance in Dutch: UV/VIS-spectroscopie#Extinctie
absorbance in Portuguese: Absorbância
absorbance in Slovak: Absorbancia
absorbance in Chinese: 吸光度
Privacy Policy, About Us, Terms and Conditions, Contact Us
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2
Material from Wikipedia, Wiktionary, Dict
Valid HTML 4.01 Strict, Valid CSS Level 2.1